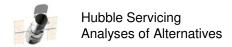


Hubble Space Telescope Servicing:

A Case Study in Analysis and Presentation of Space Program Risk Information

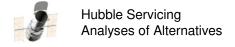
Vicky Hwa David Bearden Jack Maguire

April 16, 2008



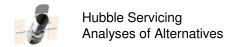
Background

- Safety concerns surrounded the loss of the Space Shuttle Columbia and crew
- In mid-2004 NASA cancelled the Hubble Space Telescope (HST) Shuttle Servicing Mission 4 (SM4) previously planned for 2005
- Analysis at this time indicated that without servicing, HST would begin degrading, likely expiring in 2009
 - Estimates based on HST reliability models and battery studies
- NASA embarked the development of other options to service HST
- As part of a decision-making process, NASA
 Headquarters (HQ) requested a non-advocate review of
 HST servicing alternatives



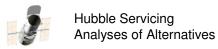
Decision Makers and Stakeholders

- NASA Administrator
- NASA Comptroller
- NASA Chief Engineer
- NASA Associate Administrator, Exploration Mission Systems Directorate (ESMD)
- NASA Associate Administrator, Science Mission Directorate (SMD)
- NASA/Goddard Space Flight Center (GSFC) Hubble Space Telescope Program Office
- NASA Independent Program Assessment Office (IPAO)
- NASA Engineering & Safety Center (NESC)
- National Academy of Sciences (NAS)
- Science Community
- Congress House Science Subcommittee



Situation in mid 2004

- NASA examined options for Hubble Space Telescope servicing without Shuttle
 - Extend mission life without servicing
 - Provide the capability to safely and reliably de-orbit Hubble
 Space Telescope (HST) at the end of its useful scientific life
 - Provide the capability to robotically extend the scientific life of HST for a minimum of 3 years
 - Enhance scientific capability with new instruments
- GSFC developed baseline concept to study feasibility of robotic servicing mission & Request for Proposal (RFP) to industry
- IPAO/NESC Technical Feasibility Study to assess technical feasibility, cost, schedule of GSFC concept
- National Academy of Sciences (NAS) Study
- Aerospace Corp. Analyses of Alternatives Study



Alternatives Study Overview

- Risk assessment of Hubble Space Telescope (HST) servicing alternatives
 - Alternatives that encompassed a range of options from safe disposal to re-hosting capability on other spacecraft
 - For each alternative assessed: (a) cost and schedule; (b) risk and safety, and (c) capability relative to HST post-SM4 state
- Study Scope
 - Nine week study: June 2004 Aug 2004
 - Level-of-detail scaled according to available data and schedule
 - Needed to convey aggregate risk information to decision makers
- Include HST science and technical communities
 - Status to and feedback from stakeholders on alternative concepts and Measures of Effectiveness (MOEs)
 - Implications of capability impact on science
 - Accurate data on HST technical constraints, operational state

Hubble Space Telescope Configuration

Hubble Space Telescope (HST)

Weight 24,500 lb Length 43.5 ft

Diameter 14 ft (Aft Shroud)
Optical System Ritchey-Chretien design
Cassegrain telescope

Primary mirror 94.5 in. dia.

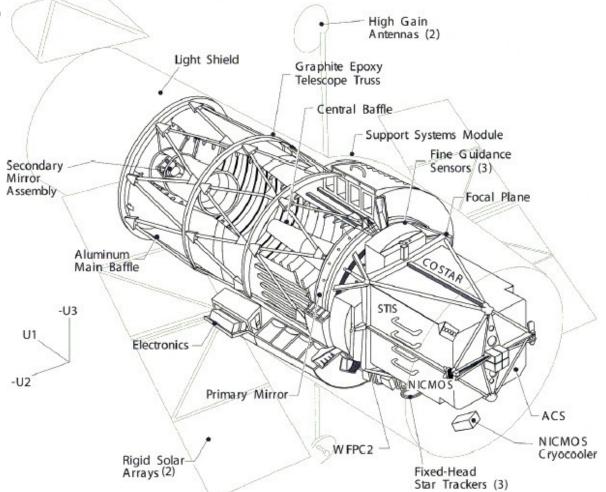
Pointing accuracy 0.007 arcsec for 24 hours Magnitude range 5m_v to 30 m_v (visual magnitude)

Wavelength range 1,100 to 24,000 Å
Angular resolution 1,100 to 24,000 Å
0.1 arcsec at 6328 Å

Orbit 320 nmi, inclined at 28.5 degrees

Orbit time 97 minutes per orbit

HST Science Program

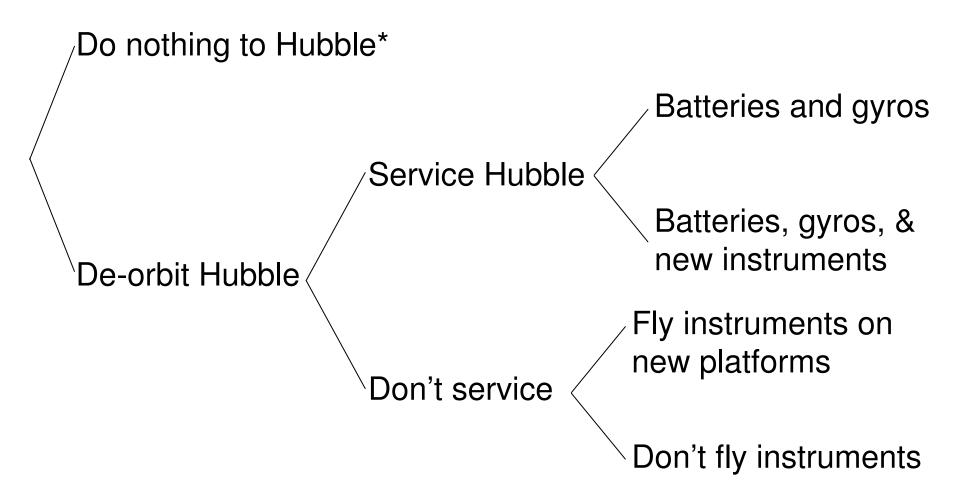

HST Scientific Instruments

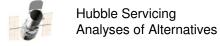
WF/PC 2 ACS NICMOS FGS

STIS

HST Observing Program

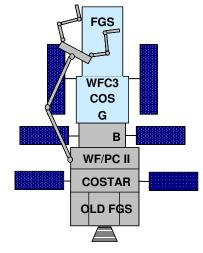
- 200 GO&AR Programs/year
- 10,000 Exposures/month
- 563 U.S. Astronomers from 33 states *
- 261 non-U.S. astronomers from 28 countries *
- 1,600 registered archival users
- 9 terabytes total archive

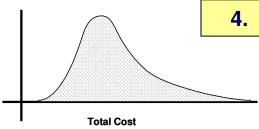



^{*} Cycle 11 results

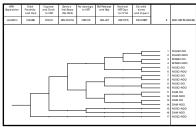
Robotic Servicing Decision Tree

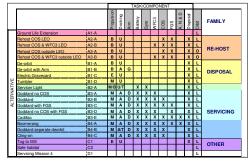
*Note: With uncontrolled HST re-entry, the casualty risk (~1 in 250) was estimated to be ~40X greater than U.S. gov't standard (1 in 10,000)



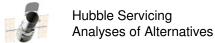


Approach


- 1. Identify Alternatives
 - 2. Define Measures of Effectiveness
 - 3. Assess Cost & Schedule



4. Assess Risk and Safety

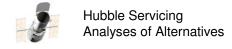

5. Assess Capability Impact

6. Integrate Findings

7. Deliver Final Report

Alternatives Development

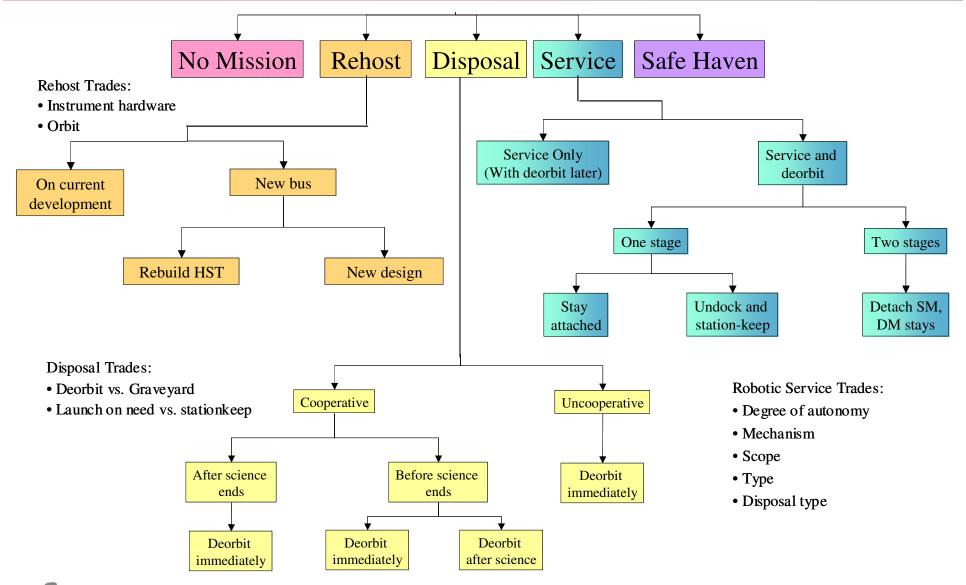
Goal

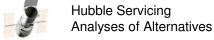

- Represent range of variation in cost, schedule and risk
- Sufficiently broad to 'cover' most concepts 'out there'
- Emphasize robotic concepts

Methodology

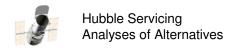
- Identify spectrum of alternatives (brainstorming and methodically)
- Down-select to a handful of representative concepts
- Define selected alternatives (concept of design, concept of operations, timeline)

Down-select Criteria


- Reasonable coverage of trade space including: lowest cost, least impact to HST, most complex, etc.
- Not an exhaustive coverage of every variation bounding cases
- Inclusion of a concept did not imply feasibility or endorsement



Alternatives Assessed



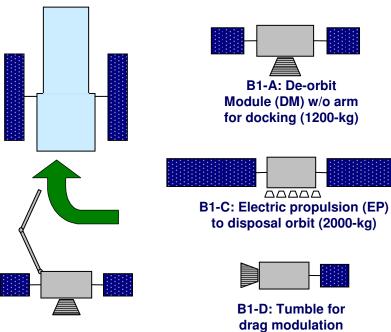
Alternatives Families

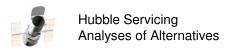
- Extension of HST science through non-servicing means
 - A1: Existing HST configuration
 - A2: Rehost in LEO
 - A3: Rehost outside LEO
- Robotic Missions
 - B1: Disposal
 - B2: Servicing (Life Extension Only) with Separate Disposal Mission
 - B3: Combined Servicing (Instruments and Life Extension)
 - B4: Servicing (Instruments and Life Extension) and Attach Later for Disposal
- Other Missions
 - C1: Tug to ISS
 - C2: Safe Haven
 - D1: SM4

All Alternatives Include a De-orbit Mission

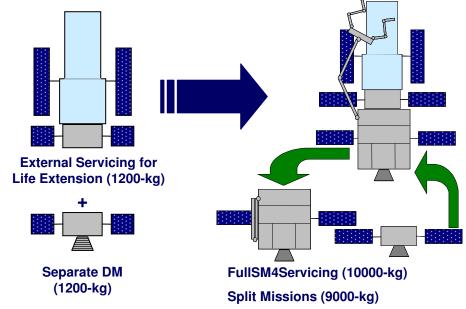
Summary of 21 Alternatives

M = Monoprop, B = Biprop, E = ElectricProp			TASK/COMPONENT												
U = Untargeted docking, T = Targeted docking, A = Grapple arm assisted D = Dexterous arm, G = Grapple arm L = LEO, O = Outside LEO X = Includes task/component A, N & D = Additional SM4 ASCS, NOBL & DMCSU servicing components			Propulsion	Docking	Arm	Battery	Gyro	WFC3	SOO	FGS	A, N & D	Disposal	Orbit	FAMILY	
		Ground Life Extension	A1-A											L	
		Rehost COS LEO	A2-A	В	U		***************************************			X	X		Χ	L	REHOST
		Rehost COS & WFC3 LEO	A2-B	В	U				X	X	X		X	L	
		Rehost COS outside LEO	A3-A	В	U					X	X		X	0	
		Rehost COS & WFC3 outside LEO	A3-B	В	U				X	X	X		X	0	
		De-orbit	B1-A	В	U								X	L	DISPOSAL
		De-orbit with Arm	¦B1-B	В	Α	G							Χ	L	
		Electric Graveyard	B1-C	Ε	U								X	L	
	٧E	Tumbler	B1-D	M	U								X	L	
	RNATIVE	Servicer Light	B2-A	M/B	U/T		Х	X					X	Г	
	RN,	Baseline no COS	B3-A	M	Α	D	X	X	X				X	L	
	ALTE	Baseline	B3-B	M	Α	D	Χ	X	Χ	X			Χ	L	
	Αľ	Baseline with FGS	B3-C	M	Α	D	Χ	Χ	Χ	X	Χ		Χ	L	SERVICE
		Baseline no COS with FGS	B3-D	M	Α	D	Χ	Χ	Χ		Χ		Χ	L	SERVICE
		Cadillac	B3-E	M	Α	D	Χ	Χ	Χ	Χ	Χ	Χ	Χ	L	
		Boomerang	B4-A	M	Α	D	Х	X	X	X	Х	Х	X	Г	
		Baseline separate deorbit	B4-B	M	A/T	D	Χ	X	X	X			X	L	
		Cling-on	B4-C	M	Α	D	Χ	X	X	X			X	L	
		Tug to ISS	C1	Е	U								X	ᆸ	
			C2											ᆸ	ASTRONAUT
_		Servicing Mission 4	D1											L	




Disposal, Servicing Alternative Configurations

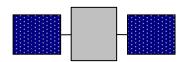
B1: Disposal Only, No Servicing

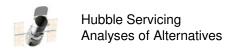


B1-B: DM w/ grapple arm for docking (3400-kg)

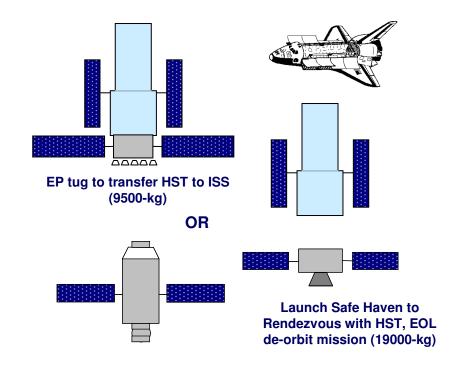
- during final orbits (400-kg)
- Electric propulsion tug to disposal orbit (2500-km)
- Small mono-prop "Tumbler"
- De-orbit before 450 km altitude
- Pegasus to Delta-II-class

B2-B4: Robotic Servicing


- Minimal servicing (batteries and gyros only) to instruments to full SM4 servicing
- Includes combinations of FGS, COS, WFC3
- Separate de-orbit missions, and options with re-rendezvous for de-orbit
- Minimum and maximum residual mass permanently attached to HST
- No arm and dexterous arm
- Delta-II to Delta IV/Atlas V- class


Rehost, Other Alternative Configurations

A: COS and WFC3 on Separate Platforms



Re-host WFC3 & COS Instrument Capability in LEO or beyond LEO (5500-7500 kg)

- Feasibility not constrained by HST life expectancy
- Includes separate de-orbit mission for HST
- Science gap after HST EOM
- Improved scheduling efficiency beyond LEO
- New program start
- 2.4m aperture
- HST spare primary mirror for LEO, light weight optics beyond LEO
- Duplicate FGS pointing & HST fine-balance reaction wheel capability
- Limited instrument component re-use for environments beyond LEO
- EELV Medium to Heavy

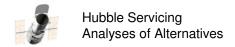
C: Servicing With Shuttle and Safe Haven

- Shuttle servicing with astronaut safe haven (based on Russian FGB)
- Full SM4 servicing
- Disposal or de-orbit via EP or separate disposal mission
- EELV Medium to Heavy & Shuttle

Measures of Effectiveness (MOEs)

- MOE Categories
 - Cost and Schedule
 - Risk and Safety
 - Capability

- 1. Cost
- 2. Schedule
- 3. Development Risk
- 4. Mission Risk
- 5. Capability

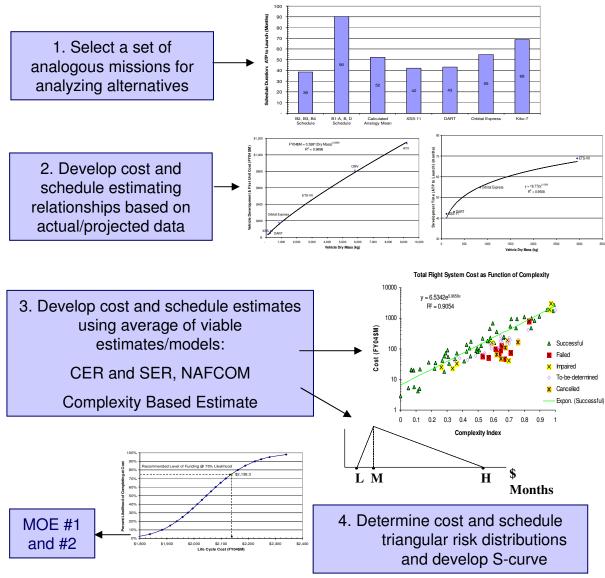

Life Cycle Cost (FY04\$B)

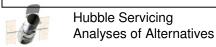
Nominal Development Time (Months)

Probability of HST in Required State (%)

Probability of Full Mission Success (%)

Capability Relative to Post-SM4 HST

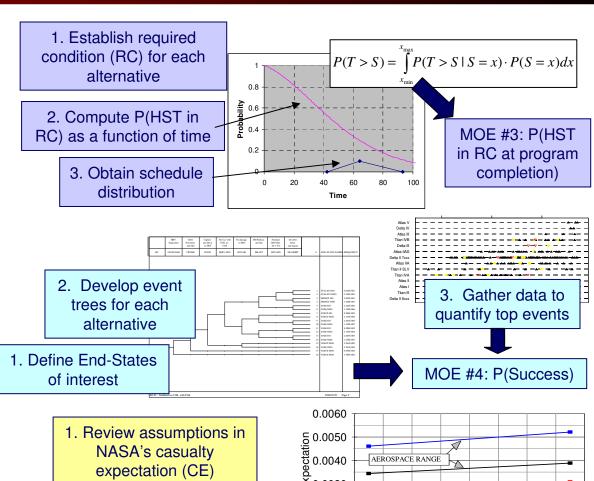

Cost & Schedule Methodology


Life Cycle Cost (\$FY04B)

- Program Management,
 Systems Engineering &
 Mission Assurance
- Vehicles
- Robotics
- Ground System Development
- Mission Operations & Data Analysis (3 years)
- De-orbit (if separate)
- Launch Vehicle
- Reserves

Nominal mission development time (months)

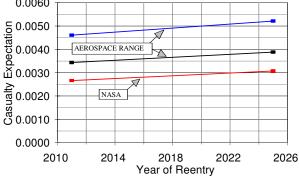
 Time from contract start (or authority to proceed, ATP) to launch

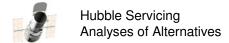

Risk & Safety Methodology

3. Development Risk

Risk related to the ability to execute the program on a schedule compatible with the degradation of the **HST**

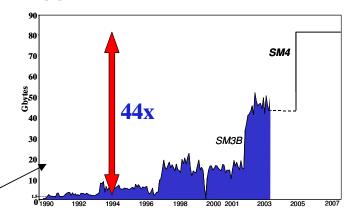
Mission Risk 4


- Risk related to the ability to successfully and safely execute the defined mission. including
 - 3 years of science operations
 - Disposal



calculation

Verified need for controlled re-entry


Capability Assessment Methodology

5. Capability Relative To Post-SM4 HST (%)

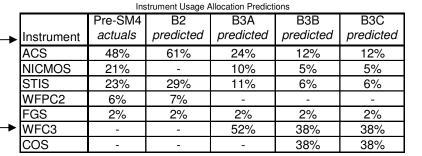
 Instrument performance after servicing, relative to post-SM4 baseline (%)

Quantitative Approach

- 1. Examine historical data for instrument usage patterns when new instruments are installed
- 2. Develop conversion factor based on historical instrument usage

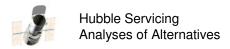
Qualitative Approach

- Estimated mass properties for each alternative
- 2. Considered induced dynamic disturbances (e.g. slosh, mechanisms)
- 3. Considered alternative-unique performance drivers such as ACS

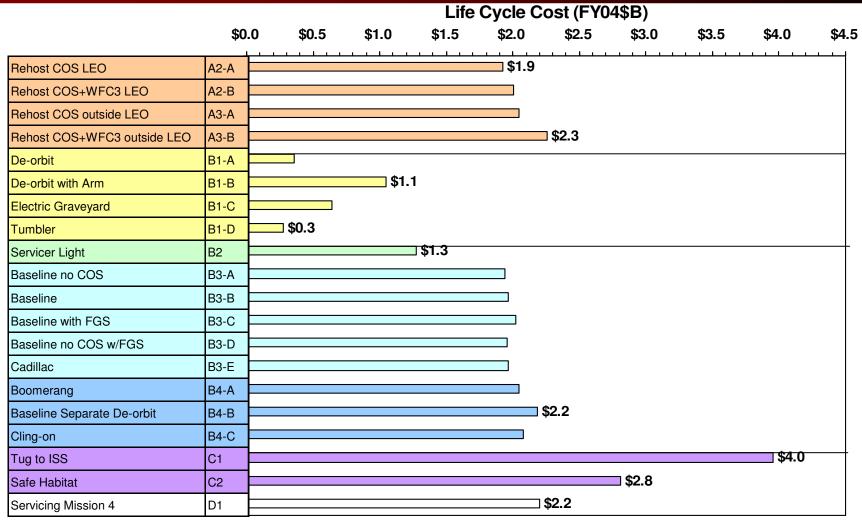


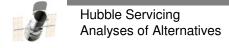
Qualitative comments on jitter performance, control authority, etc.

3. Validate conversion factor based on historical data volume patterns


- 4. Define instrument suite for each alternative
- 5. Predict instrument usage for HST after servicing mission

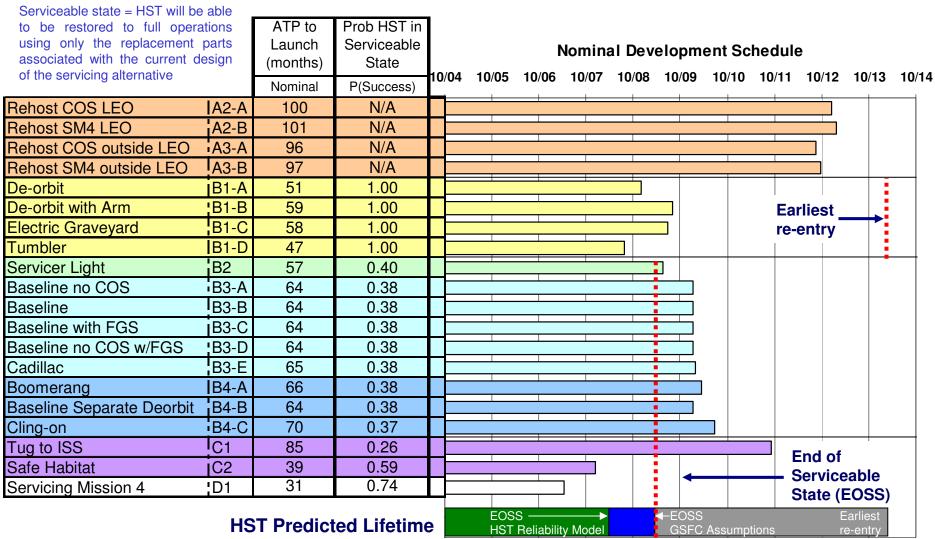
6. Use post-SM4 instrument allocation to define value of each instrument

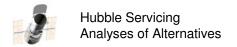

MOE #5



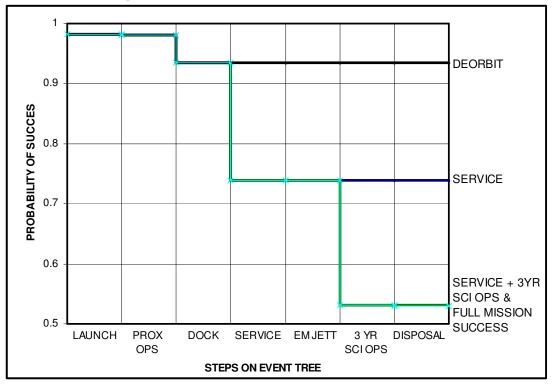
MOE 1: Life Cycle Cost

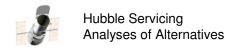
Note: SM4 cost provided by NASA


LCC Estimates Show Little Cost Difference Between Rehost & Servicing Missions



MOE 2 & 3: Schedule & Development Risk

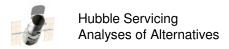



MOE 4: Mission Success

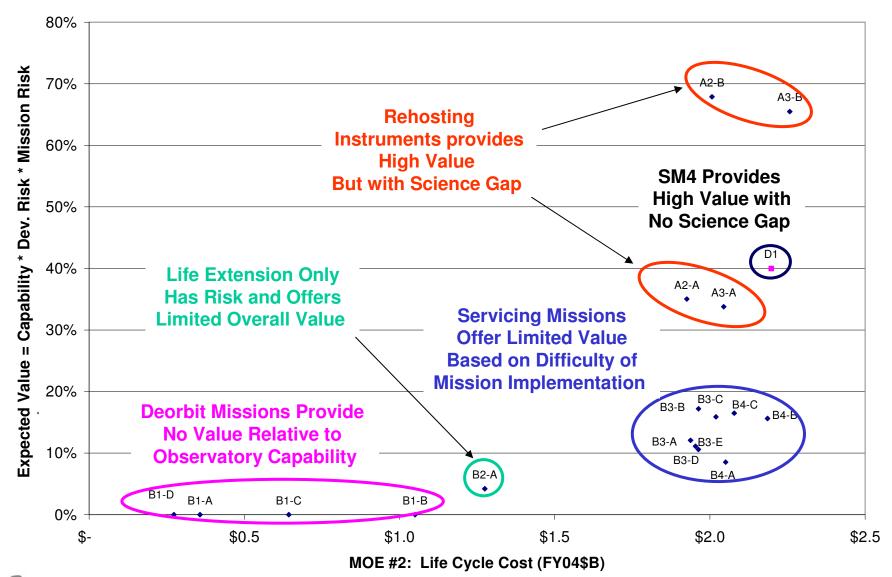
Mission (Serv, Sci, Dispose)

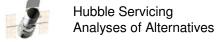
		P(Success)
Rehost COS LEO	A2-A	0.83
Rehost SM4 LEO	A2-B	0.83
Rehost COS outside LEO	АЗ-А	0.80
Rehost SM4 outside LEO	А3-В	0.80
De-orbit	B1-A	0.89
De-orbit with Arm	B1-B	0.93
Electric Graveyard	B1-C	0.88
Tumbler	B1-D	0.87
Servicer Light	B2	0.58
Baseline no COS	В3-А	0.58
Baseline	В3-В	0.52
Baseline with FGS	IB3-C	0.48
Baseline no COS w/FGS	B3-D	0.54
Cadillac	В3-Е	0.32
Boomerang	B4-A	0.26
Baseline Separate Deorbit	B4-B	0.47
Cling-on	B4-C	0.52
Tug to ISS	C1	0.43
Safe Habitat	C2	0.63
Servicing Mission 4	D1	0.63

Example Calculation: Baseline Alternative

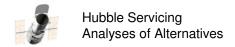


MOE 5: Capability Relative to Post-SM4 HST


			Instruments						
		Capability Relative to Post-SM4 HST	WFPC2	STIS	ACS	NICMOS	WFC3	cos	Family
Rehost COS LEO	A2-A	40%						Х	
Rehost SM4 LEO	A2-B	78%					X	Х	REHOST
Rehost COS outside LEO	АЗ-А	40%						Х	REIIOSI
Rehost SM4 outside LEO	А3-В	78%					X	Х	
De-orbit	B1-A	0%							
De-orbit with Arm	B1-B	0%			No	DISPOSAL			
Electric Graveyard B		0%			IVO	DISPOSAL			
Tumbler	B1-D	0%							
Servicer Light	B2	21%	Х	Х	X				
Baseline no COS	В3-А	62%		X	X	X	X		
Baseline	В3-В	100%		Х	X	X	X	Х	
Baseline with FGS	В3-С	100%		Х	X	X	X	Х	
Baseline no COS w/FGS	B3-D	62%		X	X	X	X		SERVICING
Cadillac	В3-Е	100%		X	X	X	X	X	
Boomerang	B4-A	100%		X	X	X	X	X	
Baseline Separate Deorb	B4-B	100%		X	X	X	X	X	
Cling-on	В4-С	100%		Х	X	X	X	Х	
Tug to ISS	C1	100%		Х	X	X	Х	Х	OTHER
Safe Habitat	C2	100%		Х	X	X	Х	Х	OTHER
SM4	D1	100%		Х	X	X	X	Х	

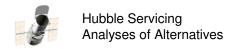


Expected Value vs. Life Cycle Cost



Findings

- A de-orbit mission is technically and programmatically feasible by earliest re-entry date
 - Suitable robotic docking technologies demonstrated in other programs
 - All propulsive re-entry options reduce casualty expectation to zero
- A robotic servicing and de-orbit mission is high risk
 - HST likely to fall into unserviceable state before robotic servicer could arrive
 - High mission risk due to unprecedented operations and unproven technology
 - Separate servicing and de-orbit missions provide flexibility however, even a minimal servicing mission has high development risk
- Re-host options are technically and programmatically feasible
 - However, there will be a 2-7 year gap in science return, between when HST ceases science operations and a new program can come on line
 - New observatory program would likely compete with ongoing and future observatories for funding
- Astronaut servicing provides highest value and continuity with manageable risk



Conclusion

- Critical assessment that robotic servicing mission: (1) could not be developed in time before HST would lapse into a non-serviceable state; and (2) would undertake unprecedented servicing operations
- Key to success of process was ability to work closely and transparently with internal and external constituencies with varying agendas
- Analysis received unusual visibility, scrutiny and interest at the highest levels of the Government culminating in testimony before the National Academy of Science and Congress
- Risk information presented in an effective way that immediately conveyed many complex inter-related factors
- Contributed to decision to abandon robotic means and put Shuttle servicing back on the table
- Currently targeting August 2008 for fifth (final) space shuttle servicing mission to HST to extend capabilities through 2013 including first ever on-orbit repair of two existing instruments: Space Telescope Imaging Spectrograph (STIS) and Advanced Cameras for Surveys (ACS)

